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Abstract

Energy-based learning (EBL) is a general framework
to describe supervised and unsupervised training methods
for probabilistic and non-probabilistic factor graphs. An
energy-based model associates a scalar energy to config-
urations of inputs, outputs, and latent variables. Learn-
ing machines can be constructed by assembling modules
and loss functions. Gradient-based learning procedures are
easily implemented through semi-automatic differentiation
of complex models constructed by assembling predefined
modules. We introduce an open-source and cross-platform
C++ library called EBLearn1 to enable the construction
of energy-based learning models. EBLearn is composed
of two major components,libidx: an efficient and flexi-
ble multi-dimensional tensor library, andlibeblearn: an
object-oriented library of trainable modules and learning
algorithms. The latter has facilities for such models as con-
volutional networks, as well as for image processing. It also
provides graphical display functions.

1. Introduction
Energy-based learning [11](EBL) provides a unified

framework for probabilistic and non-probabilistic machine
learning methods. Energy based learning models have been
successfully used in a number of applications such as ob-
ject recognition [6, 16, 7], outdoor unstructured roboticsvi-
sion [5], signal processing [13], time series modeling [12],
manifold learning [1, 4], financial prediction [2], document
recognition [10], natural language processing [3], unsuper-
vised learning of feature hierarchies [18, 15, 8] and text
classification [17]. Inference in energy based models for
a given inputX is performed by finding a configuration of
outputY and latent variablesZ that minimize anenergy
function E(X,Y ). For Learning, the energy function is
parameterized by a parameter vectorW . Learning is per-
formed by minimizing a suitableloss functional with re-
spect toW . For a given inputX, the purpose of learn-
ing is to shape the energy surface so that corresponding

1http://eblearn.sourceforge.net

desired output configuration(s) have lower energy than all
other configurations.

A simplified EBL model whereX represents the inputs
to the system (a sample from the data),Y represents the
output variable of the model, the inference process is for-
mulated as:

Y ∗ = arg min
Y ∈Y

E(X,Y ) (1)

whereY is a set of possible outputs. WhenY is a discrete
set with few elements, exhaustive search can be used, but
whenY has high cardinality or is a continuous set, suitable
minimization algorithms must be employed. In unsuper-
vised scenarios, the energy function has no observationX,
and the modelE(Y ) simply indicates whether a particular
Y is similar to training samples (low energies) or dissim-
ilar (higher energies). Different types of problems can be
formulated under this model, such as classification, detec-
tion, regression, ranking, density estimation, clustering, and
others.

Probabilistic models are a special case of EBL in which
the energy is integrable with respect toY . The distribution
can be obtained using the Gibbs formula:

P (Y |X) =
e−βE(X,Y )∫
y
e−βE(X,y)

(2)

whereβ is a positive constant, and the denominator is called
thepartition function(variableX is simply dropped for un-
supervised scenarios).

When latent variablesZ are present, they can be
minimized over or marginalized over. With mini-
mization, the energy function is simply redefined as
E(X,Y ) = minZ∈Z E(X,Y, Z), and with marginaliza-
tion asE(X,Y ) = − 1

β
log

∫
z
e−

1

β
E(X,Y,Z). If necessary.

this integral can be approximated through sampling or us-
ing variational methods.

Given a training set{(X1, Y 1), . . . (XP , Y P )}, training
a model consists in shaping the energy surfaceE(W,X, .)
(expressed as a function ofY ) parametrized byW ∈ W
by minimizing a suitable loss functional with respect toW ,



Figure 1. Energy Based Training: Before training, the energy
surface produced by anEBL model is not distinctive around train-
ing data. After training, the energy surface is shaped loweraround
training data.

averaged over the training set:

W ∗ = min
W∈W

1

P

∑
i

L(E(W,Xi, .), Y i) (3)

The loss can more simply be expressed as a function ofW :
1
P

∑
i L(W,Xi, Y i). The purpose of loss is to measure

whether the “correct” outputY i for a givenXi has lower
energy than all other outputs. As a result, the system
produces lower energy values for regions around observed
Y values, as shown in Figure 1. Building anEBL model
can therefore be achieved by designing:
1. thearchitectureof theE(W,X, Y ),
2. the inference algorithmthat will be used to infer outputs
Y that minimizeE(W,X, Y ) for a givenX and fixedW ,
3. the loss functionL(E(W,X, .), Y ) and
4. the learning algorithmthat will be used to find the best
W that minimizes the loss averaged over a training set.

1.1 Loss Functions for Energy-Based Learning
In energy based learning designing proper loss functions

for different types of architectures is required to avoid trivial
solutions where the energy surface becomes flat. Many dif-
ferent loss functions have been proposed in machine learn-
ing literature and in this section we formulate several popu-
lar loss functions in energy based learning framework.

Energy Loss: simply means that the loss func-
tion per each sample is equal to the energy function:
Len(W,Xi, Y i) = E(W,Xi, Y i). Energy loss is the sim-
plest possible loss function that can be used in wide vari-
ety of cases. The energy loss will ensure that the energy
surface ispulled downaround desired data, but it does not
guarantee that the energy surface ispulled upat all other
locations. This might lead to situations where the energy
for all samples becomes constant. Linear regression using
mean squared error (MSE) can be formulated using energy
loss: L(W,Xi, Y i) = E(W,Xi, Y i) = ||Y i − WXi||2

whereW is the matrix of parameters with respect to which
L is minimized.

Perceptron Loss:defined per each sample and over all
possible configurations of outputs takes the following form

Lperceptron(W,Xi,Y) = E(W,Xi, Y i)−min
y∈Y

E(W,Xi, y)

(4)
Perceptron loss pulls down the energy of the correct con-
figuration (first term) and it pulls up the energy of current
prediction. When the machine prediction is correct, the loss

is equal to zero and positive otherwise. One can see that,
this loss function does not enforce a margin between cor-
rect and incorrect configurations, thus might lead to almost
flat surfaces.

Negative Log-Likelihood Loss: is suitable to train a
model to produce probability estimates forP (Y |X):

Lnll = E(W,Xi, Y i) +
1

β
log

∫
y

e−βE(W,Xi,y) (5)

where β ∈ R+. As in maximum likelihood solutions
for probabilistic models, the integral in the second term of
equation 5 might be intractable to compute or might not
have an analytical solution in most cases. Approximate so-
lutions to this integral can be obtained by approximate an-
alytical solutions, sampling methods and variational meth-
ods.

Contrastive Loss:enforces a gap between the energy of
correct answerY i and the energy of themost offending in-
correct answerȲ i, defined as thewrong answer with the
smallest energy.The most commonly used contrastive loss
is the hinge loss:

Lhinge = max(0,m + E(W,Xi, Y i) − E(W,Xi, Ȳ i))
(6)

where m is the positive margin. The model is updated
whenever the energy of incorrect answer is less thanm
larger than energy of correct answer.

1.2 Modules in Energy-Based Learning
Until now, we have stated that the energy function is

parametrized byW . In most supervised scenarios, this
is conveniently achieved by using a functional module
GW (X) which maps samples from input space to output
space, and by capping it with a “distance” module that mea-
sure the discrepancy betweenGW (X) and the outputY . A
very simple example of a functional module is a single ma-
trix multiplication that projects the input along the space
defined by its columns. In more complicated cases it can
be combination of linear and nonlinear functions. Common
modules include linear modules as explained, simple non-
linear modules that are applied on each element of the input
state independently, like sigmoid functions, and convolu-
tional modules that are very similar to linear modules, but
are applied as convolution operations on input image maps.
The loss functionL is minimized with respect to the param-
etersW of the functional modules.

1.3 Architectures for Energy-Based Learning
In this section we provideEBL models for some widely

used learning algorithms.
Regression:is one of the most common algorithms used

in machine learning. A regressor model (Fig. 2) can be ob-
tained by using a squared error energy function

E(W,Xi, Y i) =
1

2
||GW (Xi) − Y i||2 (7)

together with energy loss. WhenGW is a linear operator,
this model becomes equivalent to solving the least squares
problem.
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Figure 2. Architectures for Energy Based Model: Left: Re-
gression can be formulated by using a squared distance energy
function combined with energy loss and a moduleGw(X). Right:
Two class classification can be formulated similarly using percep-
tron loss.

Two-Class Classification:can be formulated using a
simple energy function as shown in Figure 2.

E(W,Xi, Y i) = −Y iGW (Xi) (8)

Any of the perceptron loss, hinge loss or negative log like-
lihood loss can be used with this energy function to solve
two class classification problems.

Multi-Class Classification:can be done by replacing the
energy function in Figure 2 with

E(W,Xi, Y i) =

c∑
k=1

δ(Y i − k)gk (9)

where δ(u) is Kronecker delta function andGW =
[g1 g2 ... gc]. As with the two-class classification problem,
perceptron, hinge and negative log likelihood loss functions
can be used.

One can imagine that complicated architectures can be
built by combining several functional modules and energy
functions as long as the combined energy function can be
minimized with respect to the desired outputsY and the
final loss function can be minimized with respect to the pa-
rametersW .

It has to be noted that, any factor graph can also be mod-
eled using energy based learning. In a simple factor graph
an observed state is connected to a latent state through a
factor node which models the constraint in between two
states. The combination of two states are assigned high
likelihood under the compatibility constraint defined by the
factor node. One can also separate the dependency con-
straints between two states into two directional factor nodes
representing the compatibility between one node and trans-
formation of the other.

Most unsupervised learning algorithms can be modeled
in this framework. In Figure 3, we show several com-
mon unsupervised learning algorithms.PCA is a linear
model, where the transformation from observed inputX
to latent representationY is a linear projection. Accord-
ingly, transformation fromY to input spaceX ′ is also a
linear projection. The model has to be trained under the re-
construction compatibility constraint such that transformed
reconstructionX ′ has to minimize the squared reconstruc-
tion error between original inputX and projected inputX ′.
Auto-encoder neural networksare very similar to PCA, ex-
cept the projection from inputX to latent variableY is

Figure 3. Modeling Unsupervised Learning Algorithms:
Many unsupervised learning algorithms can be represented inthe
factor graph model and trained with energy based learning.

non-linear.Sparse Decomposition[14] is a uni-directional
model where, there is no direct projection form inputX to
latent variableY . Instead, for each inputX, the system
has to carry out an optimization process to infer latent rep-
resentationY . In addition to reconstruction compatibility
constraint, the latent representation has to minimize theL1

norm constraint.Predictive Sparse Decomposition[9] is an
extension to sparse coding models, where a nonlinear pre-
dictor function is also trained to infer latent variableY from
inputX without requiring any optimization process.

2. libidx: Tensor Descriptors and Operators
Theidx library (or libidx) provides convenient and effi-

cient tensor (multi-dimensional arrays) manipulations, used
as a basis for the eblearn library. There are three main com-
ponents to the library: tensor descriptors and iterators, con-
tent operators and image-specific operators.

2.1 idx: Tensor Descriptors
The idx class can be thought as a tensor pointer to a

chunk of memory (or ansrg class,srg standing for stor-
age), and multipleidx can point to different subsets of that
memory. Aidx describes a tensor by its storage (srg), its
offset on that storage, its number of dimensions (or order)
and size and stride of each dimension. Declaring a newidx
will allocate and initialize to zero a new storage of size and
type specified to the constructor and class template. Here
for example, we create a 3-dimensional tensor with double
precision of size 32x32x3, which could also be interpreted
as a 32x32 RGB image:
idx<double> t(32, 32, 3);

Being relatively cheap memory and computationaly
wise, anidx can be manipulated efficiently like a tensor
pointer without affecting the actual tensor memory. For ex-
ample, the user can select at virtually no cost the entire (2D)
slice at positionp of the dth dimension of a tensor with
select or narrow dimensiond to sizes starting at positionp
to create a 3D subset of the 3D tensort:
idx<double> slice = t.select(d, p);
idx<double> subset3d = t.narrow(d, s, p);
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Memory management is facilitated by the self garbage
collection ofsrg (reference counters), i.e. a storage is auto-
matically destroyed once no moreidx point to it.

2.2 idx loops: Tensor Iterators
While tensor elements can be accessed individually via

set and get methods, one will often need to loop over entire
dimensions or entire tensors. Looping macros are provided
for that effect, e.g. theidx aloop2 macro loops over all el-
ements of 2 tensors while theidx bloop3 macro loops over
the first dimensions of 3 tensors. For each tensor to be iter-
ated, one must specify a temporary name for the new lower-
order tensor, the original tensor and its type. For example,
to compute the sum of multiple tensors one could write:
idx<double> td3d(32, 32, 3);
idx<int> ti2d(32, 32);
int total = 0;
idx_aloop1(td0d, td3d, double) total += td0d.get();
idx_aloop1(ti0d, ti2d, int) total += ti0d.get();

2.3 Tensor Operators: Content Manipulations
While idx descriptors are inexpensive pointers,idx con-

tent operators work with the tensor data yielding more ex-
pensive operations. We now describe a few important oper-
ators among others.

Copy operator, copy the content ofd1 to f2 (same di-
mensions) with automatic type casting:
idx<double> d1(32, 32, 3);
idx<float> f1(32, 32, 3);
idx_copy(d1, f1);

I/O operators, saving and loading tensors :
save_matrix(f1, "im.mat");
idx<float> f2 = load_matrix<float>("im.mat");

Product operators, the dot of two tensors (seen as vec-
tors) or the matrix-vector multiplication:
float dot = idx_dot(f1, f2);
idx<float> f3(32, 16), f4(16), f5(32);
idx_m2dotm1(f3, f4, f5);

2.4 Tensor-based Image Operators
Images can been seen and manipulated as tensors. We

present here some key image-specific operators.
Image I/O operators, load, save or resize images:

idx<float> im = load_image<float>("im.jpg");
save_image(im, "im.png");
im = image_resize(im, 16, 16);

Image filtering, local and global normalization:

idx<float> im2 = idx_copy<float>(im);
image_global_normalization(im);
image_local_normalization(im, im2, 9);

3. libeblearn: Energy-Based Learning
The libeblearn library is mainly constituted of modules

of two types: module 1 1 which takes 1 input and pro-
duces 1 output andmodule 2 1 with 2 inputs and 1 out-
put (Fig. 4). In particular for anEBL model, we derive
the ebm 2 module frommodule 2 1 to output an energy
from its 2 inputs. Those two models are the basis for all
modules in the library which can be combined into com-
plex models. Each module implements thefprop (forward

Figure 4. The two basic types of modules.module 1 1 (left)
has 1 input and 1 output andebm 2 has 2 inputs and 1 energy out-
put. state idx store temporary results of calls tofprop (training
and inference),bprop andbbprop (training only), and infer2 (in-
ference only).

propagation),bprop (backward propagation) andbbprop
(usually back propagation of second derivatives) methods.
module 2 1 also implements theinfer2 method (infer sec-
ond input). Whilebprop andbbprop methods are only used
during training andinfer2 during inference, thefprop
method is used during both phases. Intermediate results of
fprop, bprop andbbprop calls are held in between modules
in state idx objects.

3.1 Example: a Vision System
In this example, we build, train and execute in a few lines

of code a convolutional neural network capable of object
recognition as in [6]. The machine is a stack of convolution,
subsampling and fully-connected modules (Fig. 5) taking
input images to be classified as one of five categories. We
now describe the construction of that system:

1. Build E(W,X, Y ), using a lenet7 neural network as
GW (X) and an euclidean energy module as energy function
(see Fig. 5 for corresponding architecture):

parameter<double> W;
layers<double> l7(true);
l7.add(new convolution_layer(W,5,5,1,1,ftbl(1,8)));
l7.add(new subsampling_layer(W,4,4,4,4,8));
l7.add(new convolution_layer(W,6,6,1,1,rtbl(8,24,4)));
l7.add(new subsampling_layer(W,3,3,3,3,24));
l7.add(new convolution_layer(W,6,6,1,1,ftbl(24,100)));
l7.add(new full_layer(W, 100, 5));
euclidean_energy<double, int> eenergy;
machine<double, int> E(l7, eenergy);

where the numbers are kernels sizes, strides and output
sizes.ftbl andrtbl functions provide full or sparse random
connections between layers. A shorter equivalent:

parameter<double> W;
lenet7<double> l7(W);
euclidean_machine<double, int> E(l7);

2. Build the loss and the trainer:
energy_loss eloss;
supervised_trainer<double, int> trainer(E, eloss);

3. Train the system with the NORB dataset [6] and a
learning rate of 0.0001:
norb_datasource ds("/datasets/norb");
gd_param p(0.0001);
trainer.train(ds, p);

4. Execute the system:
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Figure 5. A vision architecture (left) and a correspondingob-
ject detection example (right). Thismachine combines an eu-
clidean energy with a 6-layer neural (lenet7). During both training
and inference, the machine is first evaluated withfprop (bottom-
up). Then for training only (dashed lines), an energy loss module
comes on top of the machine and uses the training label to back-
propagate (bprop) the gradient of the loss through the entire ma-
chine. During inference however, the loss module is not used and
the answer is inferred viainfer2 following anfprop. The exam-
ple (right) uses a machine trained with the 5-class NORB dataset
(animal, car, human, plane, truck)and correctly classify Einstein as
human. Internal states and kernels are represented top-downfrom
input to ouput.

idx<double> image = load_image<double>("im.jpg");
state_idx<double> input(image);
int answer = E.infer2(input);
detector d(E, scales_number);
vector<bbox> answers = d.fprop(input);

4. Complementary Tools
In addition to core librarieslibeblearn and libidx, a

set of tools are provided for display of tensors (libidxgui)
and learning classes (libeblearngui, see Fig. 5), for dataset
generation and visualization (libeblearntools) and for unit-
testing (tester). Some demonstration projects are also avail-
able.

5. Conclusion
Energy based learning has been used in many different

contexts of machine learning and provide a very efficient
and flexible framework. We have showed that many su-
pervised and unsupervised learning algorithms and factor
graphs can be modeled using energy based learning frame-
work. Inference and learning processes are formulated for
many popular problems. More importantly, in this work
we have presented an open source machine learning library
(EBLearn) that can be used to built energy-based learning
models.EBLearnis developed usingC++ programing lan-
guage for maximum portability and flexibility. We have
also shown several code examples on how to useEBLearn

and several additional graphical display methods and im-
age processing methods that are also included. With this
work we introduce the availability of an open source ma-
chine learning library that can be used to train supervised,
semi-supervised and unsupervised models. We believe this
library contains one of the most extensive collection of ma-
chine learning algorithms.
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