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Abstract desired output configuration(s) have lower energy than all
other configurations.

Energy-based learning (EBL) is a general framework A simplified EBL model whereX represents the inputs
to describe supervised and unsupervised training methodsto the system (a sample from the dat#)represents the
for probabilistic and non-probabilistic factor graphs. An output variable of the model, the inference process is for-
energy-based model associates a scalar energy to configmulated as:
urations of inputs, outputs, and latent variables. Learn- Y* = arg min B(X,Y) 1)
ing machines can be constructed by assembling modules Yey
and loss functions. Gradient-based learning procedures ar . . , )
easily implemented through semi-automatic differergiati  WhereJ is a set of possible outputs. Whghis a discrete
of complex models constructed by assembling predefinec€t With few elements, exhaustive search can be used, but
modules. We introduce an open-source and cross-platformWhenY has high cardinality or is a continuous set, suitable
C++ library called EBLearrt to enable the construction ~Minimization algorithms must be employed. In unsuper-
of energy-based learning models. EBLearn is composediS€d scenarios, the energy function has no observafipn
of two major componentdibidx: an efficient and flexi- and the modeE(Y’) simply indicates whether a particular
ble multi-dimensional tensor library, antibeblearn: an Y iS Similar to training samples (low energies) or dissim-
object-oriented library of trainable modules and learning lar (higher energies). Different types of problems can be
algorithms. The latter has facilities for such models as-con formulated under this model, such as classification, detec-
volutional networks, as well as for image processing. loals tion, regression, ranking, density estimation, clusgrand
provides graphical display functions. others. _ S

Probabilistic models are a special case of EBL in which
the energy is integrable with respect¥o The distribution
1. Introduction can be obtained using the Gibbs formula:

Energy-based learning [11EBL) provides a unified _BE(X.Y)
framework for probabilistic and non-probabilistic maahin P(Y|X) = e 2)
learning methods. Energy based learning models have been J, e PEEw
successfully used in a number of applications such as ob-

ject recognition [6, 16, 7], outdoor unstructured roboties  \hereg is a positive constant, and the denominator is called
sion [5], signal processing [13], time series modeling [12] thepartition function(variableX is simply dropped for un-
manifold learning [1, 4], financial prediction [2], docunten supervised scenarios).

recognition [10], natural language processing [3], unsupe  \yhen |atent variablesZ are present, they can be
vised learning of feature hierarchies [18, 15, 8] and text . inimized over or marginalized over.’ With mini-
cla.SS|f|c§1tlor&1'7].Inf;arencg 'g ef.nedrgy basedf'modtsls fo; mization, the energy function is simply redefined as
a given inputX is performed by finding a configuration of /5 ' — E(X.Y 7 ith inaliza-
outputY and latent variableg that minimize anenergy (X,Y) minzez B(X,Y,Z), and with marginaliza

function E(X,Y). For Learning, the energy function is 0N asE(X,Y) = —glog [ e PECETZ)If necessary.
parameterized by a parameter vecit Learning is per-  this integral can be approximated through sampling or us-
formed by minimizing a suitabléoss functional with re- ing variational methods.

spect toW. For a given inputX, the purpose of learn- Given a training sef(X!, Y1), ... (XF Y)}, training

ing is to shape the energy surface so that correspondinga model consists in shaping the energy surfa¢#’, X, .)
(expressed as a function &f) parametrized by € W
Lhitp://eblearn.sourceforge.net by minimizing a suitable loss functional with respecitg




is equal to zero and positive otherwise. One can see that,
this loss function does not enforce a margin between cor-
rect and incorrect configurations, thus might lead to almost
flat surfaces.

Negative Log-Likelihood Loss:is suitable to train a
model to produce probability estimates ®B(Y | X):

Figure 1. Energy Based Training: Before training, the energy S 1 i
surface produced by @BL model is not distinctive around train- Lo =EW, X", Y") + —log/ e AEWX ) ()
ing data. After training, the energy surface is shaped leweund Yy

training data.

where 3 € RT. As in maximum likelihood solutions

averaged over the training set: for probabilistic models, the integral in the second term of
equation 5 might be intractable to compute or might not
S | i i have an analytical solution in most cases. Approximate so-
W= wew P ZE(E(W’ X%),Y7) ) lutions to this integral can be obtained by approximate an-
7

alytical solutions, sampling methods and variational meth
The loss can more simply be expressed as a functidif of ods. .
LS°,L(W, X%, Y?). The purpose of loss is to measure Contrastive Lossenforces a gap between the energy of
whether the “correct” output™ for a given X' has lower correct answel’* and the energy of theost offending in-
energy than all other outputs. As a result, the system correct answerY”, defined as thevrong answer with .the
produces lower energy values for regions around observeosr?ﬁ"ehsft enclargy..The most commonly used contrastive loss
Y values, as shown in Figure 1. Building &BL model IS the hinge oss:

can therefore be achieved by designing: o i viy i i
1. thearchitectureof the E(W, X, Y), Lninge = maz (0, m + B(W, X%, ¥) = E(W, XY )()6)

2. theinference algorithnthat will be used to infer outputs  \\ hare 1 is the i ; ;
o= . . positive margin. The model is updated
Y that minimizeE(W, X, V") for a givenX' and fixed\V’, whenever the energy of incorrect answer is less than

3. theloss functionC(E(W, X, .),Y) and
4. thelearning algorithmthat will be used to find the best larger than energy of correct answer.

W that minimizes the loss averaged over a training set. 1.2 Modules in Energy-Based Learning

Until now, we have stated that the energy function is
parametrized byW. In most supervised scenarios, this

1.1 Loss Functions for Energy-Based Learning is conveniently achieved by using a functional module
In energy based learning designing proper loss functionsGw (X) which maps samples from input space to output
for different types of architectures is required to avoiat space, and by capping it with a “distance” module that mea-

solutions where the energy surface becomes flat. Many dif-sure the discrepancy betweéfy, (X ) and the output”. A
ferent loss functions have been proposed in machine learnvery simple example of a functional module is a single ma-
ing literature and in this section we formulate several popu trix multiplication that projects the input along the space
lar loss functions in energy based learning framework. defined by its columns. In more complicated cases it can
Energy Loss: simply means that the loss func- be combination of linear and nonlinear functions. Common
tion per each sample is equal to the energy function: modules include linear modules as explained, simple non-
Lo, (W, X1 Y = E(W,X* Y"). Energy loss is the sim-  linear modules that are applied on each element of the input
plest possible loss function that can be used in wide vari- state independently, like sigmoid functions, and convolu-
ety of cases. The energy loss will ensure that the energytional modules that are very similar to linear modules, but
surface ispulled downaround desired data, but it does not are applied as convolution operations on input image maps.
guarantee that the energy surfacepigled upat all other The loss functiorC is minimized with respect to the param-
locations. This might lead to situations where the energy etersi of the functional modules.
for all samples becomes constant. Linear regression using
mean squared error (MSE) can be formulated using energyl.3 Architectures for Energy-Based Learning

loss: L(W, X", Y") = E(W,X",Y") = |[Y" - WX*|]* In this section we provid&€BL models for some widely
whereW is the matrix of parameters with respect to which ysed learning algorithms.
L is minimized. Regressionis one of the most common algorithms used

Perceptron Loss:defined per each sample and over all jn machine learning. A regressor model (Fig. 2) can be ob-
possible configurations of outputs takes the following form tained by using a squared error energy function

centr X' Y)=E(W, X", Y")—min E(W, X* vy L i i
l:peneptron(vvv 7y) (VV, s ) 216113 (VV, (ay)) E(VV,X Y ) _ iﬂGw(X ) _y HQ @)
4
Perceptron loss pulls down the energy of the correct con-together with energy loss. Whe#y, is a linear operator,

figuration (first term) and it pulls up the energy of current this model becomes equivalent to solving the least squares
prediction. When the machine prediction is correct, the loss problem.



EWXY) EW,XY)
We

: ;
I I
(Cnewovie | veu ) °M S, M earainet O,

. . o = & o)

X Y X Y

Sparse Decomposition

Figure 2. Architectures for Energy Based Model: Left: Re- j

gression can be formulated by using a squared distance energy
Predictive Sparse n
Decomposition M,

function combined with energy loss and a mod@lg (X ). Right:

Two class classification can be formulated similarly usingepr
tron loss.

Two-Class Classification:can be formulated using a

simple energy function as shown in Figure 2. Figure 3. Modeling Unsupervised Leaming Algorithms:
Many unsupervised learning algorithms can be representtitein
E(W Xi7 Yi) _ inGW (XZ) (8) factor graph model and trained with energy based learning.

Any of the perceptron loss, hinge loss or negative log like- non-linear. Sparse Decompositidii4] is a uni-directional
lihood loss can be used with this energy function to solve model where, there is no direct projection form inpito

two class classification problems. latent variableY'. Instead, for each inpuk, the system
Multi-Class Classification:can be done by replacing the has to carry out an optimization process to infer latent rep-
energy function in Figure 2 with resentationy”. In addition to reconstruction compatibility

. constraint, the latent representation has to minimizelthe
i - ; norm constraintPredictive Sparse Decompositif@] is an
EW,X"Y") = Z o(Y" = k)gx ©) extension to sparse coding models, where a nonlinear pre-
k=1 dictor function is also trained to infer latent variabferom

where 6(u) is Kronecker delta function andy — input X without requiring any optimization process.

[91 g2 ... gc]. Aswith the two-class classification problem, o .

perceptron, hinge and negative log likelihood loss fumsio 2. libidx: Tensor Descriptors and Operators

can be used. T i . . .
One can imagine that complicated architectures can be Theidz library (or libidz) provides convenient and effi-

bult by combining several functional mocies and encry S 1oTSCT (Tl omensiona areys) mapulatiomst,
functions as long as the combined energy function can be '

minimized with respect to the desired outpitsand the ponents to the library: tensor descriptors and iteratans; ¢

final loss function can be minimized with respect to the pa- tent operators and image-specific operators.
rameterg¥V. . .

It has to be noted that, any factor graph can also be mod-2-1 idx: Tensor Descriptors
eled using energy based learning. In a simple factor graph The idz class can be thought as a tensor pointer to a
an observed state is connected to a latent state through ahunk of memory (or asrg class,srg standing for stor-
factor node which models the constraint in between two age), and multiplédz can point to different subsets of that
states. The combination of two states are assigned highmemory. Aidx describes a tensor by its storage), its
likelihood under the compatibility constraint defined bg th ~ offset on that storage, its number of dimensions (or order)
factor node. One can also separate the dependency cor@nd size and stride of each dimension. Declaring aiaw
straints between two states into two directional factorasod  Will allocate and initialize to zero a new storage of size and
representing the compatibility between one node and trans-]tcype specified to the constructor and class template. Here
formation of the other. or example, we create a 3-dimensional tensor with double

Most unsupervised learning algorithms can be modeleqPrecision of size _32x32?<3, which could also be interpreted
. - ; as a 32x32 RGB image:
in this framework. In Figure 3, we show several com-
mon unsupervised learning algorithm$CA is a linear ' dx<double>t(32, 32, 3);
model, where the transformation from observed injut Being relatively cheap memory and computationaly
to latent representatiol is a linear projection. Accord-  wise, anidz can be manipulated efficiently like a tensor
ingly, transformation fromy” to input spaceX’ is also a pointer without affecting the actual tensor memory. For ex-
linear projection. The model has to be trained under the re-ample, the user can select at virtually no cost the entirg (2D
construction compatibility constraint such that transfed slice at positionp of the d** dimension of a tensor with
reconstructionX’ has to minimize the squared reconstruc- select or narrow dimensiow to sizes starting at positiom

tion error between original input and projected inpuk’’. to create a 3D subset of the 3D tensor
Auto-encoder neural networkse very similar to PCA, ex- i gx<doubl e> slice = t.sel ect(d, p);
cept the projection from inpuk to latent variableY is i dx<doubl e> subset3d = t.narrow(d, s, p);



Memory management is facilitated by the self garbage
collection ofsrg (reference counters), i.e. a storage is auto-
matically destroyed once no moiéx point to it.

2.2 idx loops: Tensor Iterators

While tensor elements can be accessed individually via
set and get methods, one will often need to loop over entire
dimensions or entire tensors. Looping macros are provided
for that effect, e.g. thédx_aloop2 macro loops over all el-
ements of 2 tensors while thiéxz_bloop3 macro loops over

the first dimensions of 3 tensors. For each tensor to be iter-

ated, one must specify a temporary name for the new lower-
order tensor, the original tensor and its type. For example,
to compute the sum of multiple tensors one could write:

i dx<doubl e> td3d(32, 32, 3);

i dx<i nt > ti2d(32, 32);

int total = 0;

i dx_al oopl1(tdod,
i dx_al oop1(ti Od,

td3d, double) total
ti2d, int) total

+= td0d. get ();
+= ti0d.get();

2.3 Tensor Operators: Content Manipulations

While idx descriptors are inexpensive pointeis; con-
tent operators work with the tensor data yielding more ex-
pensive operations. We now describe a few important oper-
ators among others.

Copy operator, copy the content ofl1 to f2 (same di-
mensions) with automatic type casting:
i dx<doubl e> d1(32, 32, 3);
idx<float> f1(32, 32, 3);
i dx_copy(d1, f1);

1/0 operators, saving and loading tensors :
save_matrix(fl, "immt");
idx<float> f2 = |l oad_matrix<float>("immat");

Product operators, the dot of two tensors (seen as vec-
tors) or the matrix-vector multiplication:
float dot i dx_dot (f1, f2);
i dx<float> f3(32, 16), f4(16),
i dx_n2dot (3, f4, f5);

f5(32);

state_idx state_idx
G(X) E(X, Y)
1prop; bprop ?fprop ' bprop
module_1_1 ebm_2
ipropi bprop fprop : bprop fprop iinferz
state_idx state_idx state_idx
X X Y

Figure 4. The two basic types of modulesmodule_1_1 (left)
has 1 input and 1 output ar@m_2 has 2 inputs and 1 energy out-
put. state_tdz store temporary results of calls f@rop (training
and inference)bprop andbbprop (training only), and infer2 (in-
ference only).

propagation),bprop (backward propagation) angbprop
(usually back propagation of second derivatives) methods.
module_2_1 also implements thé: fer2 method (infer sec-
ond input). Whilebprop andbbprop methods are only used
during training andinfer2 during inference, thefprop
method is used during both phases. Intermediate results of
fprop, bprop andbbprop calls are held in between modules

in state_idx objects.

3.1 Example: a Vision System

In this example, we build, train and execute in a few lines
of code a convolutional neural network capable of object
recognition as in [6]. The machine is a stack of convolution,
subsampling and fully-connected modules (Fig. 5) taking
input images to be classified as one of five categories. We
now describe the construction of that system:

1. Build E(W, X,Y), using a lenet7 neural network as
Gw (X) and an euclidean energy module as energy function
(see Fig. 5 for corresponding architecture):

par anet er <doubl e> W
| ayer s<doubl e> [ 7(true);

_ | 7. add(new convol ution_|l ayer(W5,5,1,1,ftbl (1,8)));
2.4 Tensor-based Image Opergtors | 7. add( new subsanpl i ng_| ayer (W4. 4. 4. 4, 8))
Images can been seen and manipulated as tensors. \NIeT- aggg new cogvol ultl On_: ayergwg, g, é 1, rt?;(& 24,4)));
i - ifi 7.a new subsanpling_| ayer(W3, 3, 3, 3,24));
present here some key Image SpeCIfIC opere}tors. . | 7. add(new convol ution_| ayer(W®6, 6,1, 1, ftbl (24, 100)));
Image /O operators, load, save or resize images: 1 7. add(new ful | | ayer (W 100, 5)):

i dx<float> im= |oad_i mage<float>("imjpg");
save_i mage(im "impng");

im= inmage_resize(im 16, 16);

Image filtering, local and global normalization:

idx<float> in2 = idx_copy<float>(in);
i mage_gl obal _normalization(im;
i mge_l ocal _normalization(im in2, 9);

3. libeblearn Energy-Based Learning

Thelibeblearn library is mainly constituted of modules
of two types: module_1_1 which takes 1 input and pro-
duces 1 output anchodule_2_1 with 2 inputs and 1 out-
put (Fig. 4). In particular for arEBL model, we derive
the ebm_2 module frommodule_2_1 to output an energy
from its 2 inputs. Those two models are the basis for all
modules in the library which can be combined into com-
plex models. Each module implements the-op (forward

eucl i dean_ener gy<doubl e, int> eenerqgy;

machi ne<doubl e, int> E(17, eenergy);

where the numbers are kernels sizes, strides and output
sizes.ftbl andrtbl functions provide full or sparse random
connections between layers. A shorter equivalent;

par anet er <doubl e> W

| enet 7<doubl e> [ 7(W;

eucl i dean_machi ne<doubl e, int> E(I17);

2. Build the loss and the trainer:

energy_l oss el oss;
super vi sed_trai ner <doubl e,

3. Train the system with the NORB dataset [6] and a
learning rate of 0.0001:
norb_dat asource ds("/datasets/norb");

gd_param p(0.0001);
trainer.train(ds, p);

int> trainer(gE eloss);

4. Execute the system:



( energy_loss ) and several additional graphical display methods and im-

+ E age processing methods that are also included. With this
euclidean_energy | work we introduce the availability of an open source ma-
— ; chine learning library that can be used to train supervised,
| tlabel . . . . .
e | orop semi-supervised and unsupervised models. We believe this
; : library contains one of the most extensive collection of ma-
HE chine learning algorithms.
HE .
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